닫기
Loading..

Please wait....

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보통신학회 논문지 (J. of the Korea Inst. of Information&Communication Engineering)

한국정보통신학회 논문지 (J. of the Korea Inst. of Information&Communication Engineering)

Current Result Document : 6 / 18 이전건 이전건   다음건 다음건

한글제목(Korean Title) RANSAC을 이용한 다중 평면 피팅의 효율적인 CUDA 구현
영문제목(English Title) Efficient CUDA Implementation of Multiple Planes Fitting Using RANSAC
저자(Author) 조태훈   Tai-Hoon Cho  
원문수록처(Citation) VOL 23 NO. 04 PP. 0388 ~ 0393 (2019. 04)
한글내용
(Korean Abstract)
외란(Outlier)이 있는 데이터를 피팅(Fitting)하는 방법으로 RANSAC(RANdom SAmple Consensus)알고리즘이 선, 원, 타원 등 의 피팅에 많이 사용되고 있다. 본 논문은 다수의 평면에 대한 3차원 포인트 데이터가 주어질 때 각 평면에 대해 RANSAC기반 평면 피팅을 최근 딥러닝 등에 많이 사용되는 GPU의 하나인 CUDA를 이용하여 효율적으로 수행하는 알고리즘을 제안한다. 모의 데이터와 실제 데이터를 이용하여 제안된 알고리즘의 성능을 CPU와 비교하여 보인다. 외란이 많고 인라이어(inlier) 비율이 낮을수록 CPU대비 속도가 향상되고 평면의 개수가 많을수록 평면당 데이터개수가 많을수록 병렬처리에 의한 속도가 가속됨을 보인다. 제안된 방법은 다중 평면 피팅외의 다른 피팅에도 쉽게 적용할 수 있다.
영문내용
(English Abstract)
As a fiiting method to data with outliers, RANSAC(RANdom SAmple Consensus) based algorithm is widely used in fitting of line, circle, ellipse, etc. CUDA is currently most widely used GPU with massive parallel processing capability. This paper proposes an efficient CUDA implementation of multiple planes fitting using RANSAC with 3d points data, of which one set of 3d points is used for one plane fitting. The performance of the proposed algorithm is demonstrated compared with CPU implementation using both artificially generated data and real 3d heights data of a PCB. The speed-up of the algorithm over CPU seems to be higher in data with lower inlier ratio, more planes to fit, and more points per plane fitting. This method can be easily applied to a wide variety of other fitting applications.
키워드(Keyword) CUDA   평면 피팅   RANSAC   GPU   CUDA   Plane fitting   RANSAC   GP  
파일첨부 PDF 다운로드