닫기
Loading..

전자정보연구정보센터 ICT 융합 전문연구정보의 집대성

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보처리학회 논문지 > 정보처리학회 논문지 소프트웨어 및 데이터 공학

정보처리학회 논문지 소프트웨어 및 데이터 공학

Current Result Document : 2 / 4 이전건 이전건   다음건 다음건

한글제목(Korean Title) OBDII 데이터 기반의 실시간 연료 소비량 예측 모델 연구
영문제목(English Title) A Modeling of Realtime Fuel Comsumption Prediction Using OBDII Data
저자(Author) 양희은   김도현   최호섭   Hee-Eun Yang   Do-Hyun Kim   Hoseop Choe  
원문수록처(Citation) VOL 10 NO. 02 PP. 0057 ~ 0064 (2021. 02)
한글내용
(Korean Abstract)
자율주행차 시대가 도래하면서 ECU (Electronic Control Unit)는 점차 고도화되고 있고, 이에 따라 차량에서 정확한 데이터를 추출하고 분석하려는 연구가 다양하게 시도되어 왔다. 그러나 ECU는 차량 제조사별로 상이한 프로토콜을 가지고 있어 상용 단말기로는 정확한 데이터 추출과 분석이 어렵다. 본 연구에서는 정확한 차량 데이터를 추출하기 위하여 전용 펌웨어를 개발하여 차량의 2019년 1월부터 2월의 실제 주행데이터 53,580건의 데이터를 추출하였으며, 20회가 넘는 실제 도로 주행을 통해서 데이터의 정확도를 검증하였다. 이러한 데이터를 바탕으로 실시간 연료 소비량 예측 모델의 정확도를 높이기 위하여 스태킹 앙상블 기법을 이용하였다. 본 연구에서는 베이스 모델로 Ridge, Lasso, XGBoost, LightGBM이 사용되고 메타 모델은 Ridge가 사용되었으며, 예측 성능은 MAE 0.011, RMSE 0.017로 최적의 결과를 보였다.
영문내용
(English Abstract)
This study presents a method for realtime fuel consumption prediction using real data collected from OBDII. With the advent of the era of self-driving cars, electronic control units(ECU) are getting more complex, and various studies are being attempted to extract and analyze more accurate data from vehicles. But since ECU is getting more complex, it is getting harder to get the data from ECU. To solve this problem, the firmware was developed for acquiring accurate vehicle data in this study, which extracted 53,580 actual driving data sets from vehicles from January to February 2019. Using these data, the ensemble stacking technique was used to increase the accuracy of the realtime fuel consumption prediction model. In this study, Ridge, Lasso, XGBoost, and LightGBM were used as base models, and Ridge was used for meta model, and the predicted performance was MAE 0.011, RMSE 0.017.
키워드(Keyword) 연료 소비량   예측모델   스태킹 앙상블   회귀모델   OBDII   Fuel Consumption   Prediction Model   Stacking Ensemble   Regression Model  
원문 PDF 다운로드