닫기
Loading..

전자정보연구정보센터 ICT 융합 전문연구정보의 집대성

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보처리학회 논문지 > 정보처리학회 논문지 소프트웨어 및 데이터 공학

정보처리학회 논문지 소프트웨어 및 데이터 공학

Current Result Document : 4 / 5 이전건 이전건   다음건 다음건

한글제목(Korean Title) 양방향 순환신경망 임베딩을 이용한 리그오브레전드 승패 예측
영문제목(English Title) Predicting Win-Loss of League of Legends Using Bidirectional LSTM Embedding
저자(Author) 김철기   이수원   Cheolgi Kim   Soowon Lee  
원문수록처(Citation) VOL 09 NO. 02 PP. 0061 ~ 0068 (2020. 02)
한글내용
(Korean Abstract)
e-sports는 최근 꾸준한 성장을 이루면서 세계적인 인기 스포츠 종목이 되었다. 본 논문에서는 e-sports의 대표적인 게임인 리그오브레전드 경기 시작 단계에서의 승패 예측 모델을 제안한다. 리그오브레전드에서는 챔피언이라고 불리는 게임 상의 유닛을 플레이어가 선택하여 플레이하게 되는데, 각 플레이어의 선택을 통하여 구성된 팀의 챔피언 능력치 조합은 승패에 영향을 미친다. 제안 모델은 별다른 도메인 지식 없이 플레이어 단위 챔피언 능력치를 팀 단위 챔피언 능력치로 임베딩한 Bidirectional LSTM 임베딩 기반 딥러닝 모델이다. 기존 분류 모델들과 비교 결과 팀 단위 챔피언 능력치 조합을 고려한 제안 모델에서 58.07%의 가장 높은 예측 정확도를 보였다.
영문내용
(English Abstract)
E-sports has grown steadily in recent years and has become a popular sport in the world. In this paper, we propose a win-loss prediction model of League of Legends at the start of the game. In League of Legends, the combination of a champion statistics of the team that is made through each player's selection affects the win-loss of the game. The proposed model is a deep learning model based on Bidirectional LSTM embedding which considers a combination of champion statistics for each team without any domain knowledge. Compared with other prediction models, the highest prediction accuracy of 58.07% was evaluated in the proposed model considering a combination of champion statistics for each team.
키워드(Keyword) League of Legends   Win-Loss Prediction   Machine Learning   Neural Network   리그오브레전드   승패 예측   기계 학습   신경망   LSTM  
원문 PDF 다운로드