닫기
Loading..

전자정보연구정보센터 ICT 융합 전문연구정보의 집대성

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보처리학회 논문지 > 정보처리학회 논문지 소프트웨어 및 데이터 공학

정보처리학회 논문지 소프트웨어 및 데이터 공학

Current Result Document : 3 / 6 이전건 이전건   다음건 다음건

한글제목(Korean Title) IOT 환경에서의 오토인코더 기반 특징 추출을 이용한 네트워크 침입탐지 시스템
영문제목(English Title) Network Intrusion Detection System Using Feature Extraction Based on AutoEncoder in IOT environment
저자(Author) Joohwa Lee   Keehyun Park   이주화   박기현  
원문수록처(Citation) VOL 08 NO. 12 PP. 0483 ~ 0490 (2019. 12)
한글내용
(Korean Abstract)
네트워크 침입 탐지 시스템(NIDS)에서 분류의 기능은 상당히 중요하며 탐지 성능은 다양한 특징에 따라 달라진다. 최근 딥러닝에 대한 연구가 많이 이루어지고 있으나 네트워크 침입탐지 시스템에서는 많은 수의 트래픽과 고차원의 특징으로 인하여 속도가 느려지는 문제점이 있다. 따라서 딥러닝을 분류에 사용하는 것이 아니라 특징 추출을 위한 전처리 과정으로 사용하며 추출한 특징을 기반으로 분류하는 연구 방법을 제안한다. 딥러닝의 대표적인 비지도 학습인 Stacked AutoEncoder를 사용하여 특징을 추출하고 Random Forest 분류 알고리즘을 사용하여 분류한 결과 분류 성능과 탐지 속도의 향상을 확인하였다. IOT 환경에서 수집한 데이터를 이용하여 정상 및 공격트래픽을 멀티클래스로 분류하였을 때 99% 이상의 성능을 보였으며, AE-RF, Single-RF와 같은 다른 모델과 비교하였을 때도 성능 및 탐지속도가 우수한 것으로 나타났다.
영문내용
(English Abstract)
In the Network Intrusion Detection System (NIDS), the function of classification is very important, and detection performance depends on various features. Recently, a lot of research has been carried out on deep learning, but network intrusion detection system experience slowing down problems due to the large volume of traffic and a high dimensional features. Therefore, we do not use deep learning as a classification, but as a preprocessing process for feature extraction and propose a research method from which classifications can be made based on extracted features. A stacked AutoEncoder, which is a representative unsupervised learning of deep learning, is used to extract features and classifications using the Random Forest classification algorithm. Using the data collected in the IOT environment, the performance was more than 99% when normal and attack traffic are classified into multiclass, and the performance and detection rate were superior even when compared with other models such as AE-RF and Single-RF.
키워드(Keyword) NIDS   IOT   Unsupervised Learning   Machine Learning   AutoEncoder   네트워크 침입탐지시스템   사물인터넷   비지도학습   기계학습   오토인코더  
원문 PDF 다운로드