닫기
Loading..

Please wait....

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보과학회 논문지 > 정보과학회논문지 (Journal of KIISE)

정보과학회논문지 (Journal of KIISE)

Current Result Document : 10 / 10 이전건 이전건

한글제목(Korean Title) 문장 임베딩 기반 텍스트랭크를 이용한 문서 요약
영문제목(English Title) Document Summarization Using TextRank Based on Sentence Embedding
저자(Author) 정석원   김진태   김학수   Seok-won Jeong   Jintae Kim   Harksoo Kim  
원문수록처(Citation) VOL 46 NO. 03 PP. 0285 ~ 0289 (2019. 03)
한글내용
(Korean Abstract)
문서 요약은 원본 문서가 가진 주요 내용을 유지하는 축약된 크기의 문서를 만들어내는 것이다. 추출 요약은 원문에서 많은 양의 텍스트를 복사하는 것으로 문법과 정확성의 기본 수준을 보장받을 수 있어 과거부터 활발히 연구되어 왔다. 추출 요약에 사용되는 대표적 방법인 텍스트랭크는 단어의 빈도를 통해 그래프의 간선을 계산하므로 문장이 가진 의미적인 정도를 고려하기 어렵다. 이러한 단점을 해결하기 위해 본 논문에서는 문장 임베딩을 사용하는 새로운 텍스트랭크를 제안한다. 다양한 임베딩 평가를 통해 제안 방법이 일반적인 텍스트랭크 방법보다 문장의 의미를 잘 고려한 결과를 출력한다는 것을 확인하였다.
영문내용
(English Abstract)
Document summarization is creating a short version document that maintains the main content of original document. An extractive summarization has been actively studied by the reason of it guarantees the basic level of grammar and high level of accuracy by copying a large amount of text from the original document. It is difficult to consider the meaning of sentences because the TextRank, which is a typical extractive summarization method, calculates an edge of graph through the frequency of words. In a bid to solve these drawbacks, we propose a new TextRank using sentence embedding. Through experiments, we confirmed that the proposed method can consider the meaning of the sentence better than the existing method.
키워드(Keyword) 문서 요약   추출 요약   텍스트랭크   문장 임베딩   document summarization   extractive summarization   TextRank   sentence embedding  
파일첨부 PDF 다운로드