닫기
Loading..

전자정보연구정보센터 ICT 융합 전문연구정보의 집대성

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보과학회 논문지 > 정보과학회논문지 (Journal of KIISE)

정보과학회논문지 (Journal of KIISE)

Current Result Document : 5 / 16 이전건 이전건   다음건 다음건

한글제목(Korean Title) 지식 베이스 임베딩을 활용한 지식 완성 모델링 기법
영문제목(English Title) Knowledge Completion Modeling using Knowledge Base Embedding
저자(Author) 최현영   홍지훈   이완곤   바트셀렘   전명중   박현규   박영택   Hyun-Young Choi   Ji-Hun Hong   Wan-Gon Lee   Batselem Jagvaral   Myung-Joong Jeon   Hyun-Kyu Park   Young-Tack Park  
원문수록처(Citation) VOL 45 NO. 09 PP. 0895 ~ 0903 (2018. 09)
한글내용
(Korean Abstract)
최근 웹 데이터를 기반으로 자동적으로 지식베이스를 구축하는 방법들이 연구되고 있지만, 웹 데이지터의 불완전성으로 인해 일부 데이터가 누락되거나 다른 데이터와의 연결이 부족한 경우가 발생한다. 이러한 문제를 해결하기 위해 기존 연구들은 자연어 임베딩을 기반으로 인공 신경망을 통해 학습하는 방법들을 제안했다. 하지만 실제로 사용되는 많은 지식베이스의 경우 자연어 말뭉치가 존재하지 않아 엔티티 임베딩에 어려움이 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 지식 베이스의 RDF 데이터를 문장 형태의 RDF-Sentence로 변환 후 임베딩에 사용하여 단어 벡터를 생성하고 신경망을 사용하는 지식 완성 기법을 제안한다. 본 논문에서는 제안하는 방법의 성능을 측정하기 위해 트리플 분류 실험을 진행했다. 기존 NTN 모델과 비교 실험을 수행하였고, 기존 연구보다 평균적으로 15% 높은 정확도를 얻었다. 또한, 한국어 최대 지식 베이스인 WiseKB 지식 베이스에 적용하여 88%의 정확도를 얻었다.
영문내용
(English Abstract)
In recent years, a number of studies have been conducted for the purpose of automatically building a knowledge base that is based on web data. However, due to the incomplete nature of web data, there can be missing data or a lack of connections among the data entities that are present. In order to solve this problem, recent studies have proposed methods that train a model to predict this missing data through an artificial neural network based on natural language embedding, but there is a drawback to embedding entities. In practice, natural language corpus is not present in many knowledge bases. Therefore, in this paper, we propose a knowledge completion method that converts the knowledge base of RDF data into an RDF-sentence and uses embedding to create word vectors. We conducted a triple classification experiment in order to measure the performance of the proposed method. The proposed method was then compared with existing NTN models, and on average, 15% accuracy was obtained. In addition, we obtained 88촣uracy by applying the proposed method to the Korean knowledge base known as WiseKB.
키워드(Keyword) 지식베이스   온톨로지   지식 완성   신경망   임베딩   knowledge base   ontology   knowledge completion   neural network   embedding  
원문 PDF 다운로드