닫기
Loading..

전자정보연구정보센터 ICT 융합 전문연구정보의 집대성

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보과학회 논문지 > 정보과학회논문지 (Journal of KIISE)

정보과학회논문지 (Journal of KIISE)

Current Result Document : 7 / 13 이전건 이전건   다음건 다음건

한글제목(Korean Title) 깊은 신경망에서 단일 중간층 연결을 통한 물체 분할 능력의 심층적 분석
영문제목(English Title) Investigating the Feature Collection for Semantic Segmentation via Single Skip Connection
저자(Author) 임종화   손경아   Jonghwa Yim   Kyung-Ah Sohn  
원문수록처(Citation) VOL 44 NO. 12 PP. 1282 ~ 1289 (2017. 12)
한글내용
(Korean Abstract)
최근 심층 컨볼루션 신경망을 활용한 이미지 분할과 물체 위치감지 연구가 활발히 진행되고 있다. 특히 네트워크의 최상위 단에서 추출한 특징 지도뿐만 아니라, 중간 은닉 층들에서 추출한 특징 지도를 활용하면 더욱 정확한 물체 감지를 수행할 수 있고 이에 대한 연구 또한 활발하게 진행되고 있다. 이에 밝혀진 경험적 특성 중 하나로 중간 은닉 층마다 추출되는 특징 지도는 각기 다른 특성을 가지고 있다는 것이다. 그러나 모델이 깊어질수록 가능한 중간 연결과 이용할 수 있는 중간 층 특징 지도가 많아지는 반면, 어떠한 중간 층 연결이 물체 분할에 더욱 효과적일지에 대한 연구는 미비한 상황이다. 또한 중간층 연결 방식 및 중간층의 특징 지도에 대한 정확한 분석 또한 부족한 상황이다. 따라서 본 연구에서 최신 깊은 신경망에서 중간층 연결의 특성을 파악하고, 어떠한 중간 층 연결이 물체 감지에 최적의 성능을 보이는지, 그리고 중간 층 연결마다 특징은 어떠한지 밝혀내고자 한다. 그리고 이전 방식에 비해 더 깊은 신경망을 활용하는 물체 분할의 방법과 중간 연결의 방향을 제시한다.
영문내용
(English Abstract)
Since the study of deep convolutional neural network became prevalent, one of the important discoveries is that a feature map from a convolutional network can be extracted before going into the fully connected layer and can be used as a saliency map for object detection. Furthermore, the model can use features from each different layer for accurate object detection: the features from different layers can have different properties. As the model goes deeper, it has many latent skip connections and feature maps to elaborate object detection. Although there are many intermediatelayers that we can use for semantic segmentation through skip connection, still the characteristics of each skip connection and the best skip connection for this task are uncertain. Therefore, in this study, we exhaustively research skip connections of state-of-the-art deep convolutional networks and investigate the characteristics of the features from each intermediate layer. In addition, this study would suggest how to use a recent deep neural network model for semantic segmentation and it would therefore become a cornerstone for later studies with the state-of-the-art network models.
키워드(Keyword) 물체 분할   특징 지도   중간층 연결   깊은 컨볼루션 신경망   중간층   semantic segmentation   feature map   skip connection   deep convolutional network   intermediate layer  
원문 PDF 다운로드