닫기
Loading..

Please wait....

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보과학회 논문지 > 정보과학회 논문지 B : 소프트웨어 및 응용

정보과학회 논문지 B : 소프트웨어 및 응용

Current Result Document : 1 / 12   다음건 다음건

한글제목(Korean Title) 암 분류를 위한 음의 상관관계 특징을 이용한 앙상블 분류기
영문제목(English Title) Ensemble Classifier with Negatively Correlated Features for Cancer Classification
저자(Author) 원홍희   조성배  
원문수록처(Citation) VOL 30 NO. 12 PP. 1124 ~ 1134 (2003. 12)
한글내용
(Korean Abstract)
최근의 DNA 마이크로어레이 기술로 많은 양의 유전자 데이타를 얻을 수 있는데, 특히 암의 진단과 치료에 적용되어 암의 정확한 분류에 많은 도움을 줄 것으로 기대된다. DNA로부터 얻어지는 유전자 데이타의 양은 매우 방대하므로 이를 효과적으로 분석하는 것은 매우 중요하다. 암의 분류는 진단과 치료에 있어 매우 중요하므로 하나의 분류기에 의존한 분류 결과보다는 다수의 전문화된 분류기 결과를 결합하여 결과를 도출하는 것이 바람직하다. 일반적으로 분류기를 결합함으로써 분류 성능 및 분류 결과에 대한 신뢰도를 높일 수 있다. 앙상블 분류기의 많은 장점에도 불구하고, 오류 의존적인 분류기의 결합은 성능 향상에 한계가 있다. 본 논문에서는 암을 정확하게 분류하기 위해서 음의 상관관계를 갖는 특징으로 학습한 신경망 분류기를 결합하는 방법을 제안하고, 제안한 방법의 유용성을 체계적으로 분석하고자 한다. 세 가지 벤치마크 암 데이타에 대하여 제안한 방법을 적용하여 실험한 결과, 음의 상관관계 특징을 이용한 앙상블 분류기가 다른 분류기보다 높은 성능을 내는 것을 확인할 수 있었다.
영문내용
(English Abstract)
The development of microarray technology has supplied a large volume of data to many fields. In particular, it has been applied to prediction and diagnosis of cancer, so that it expectedly helps us to exactly predict and diagnose cancer. It is essential to efficiently analyze DNA microarray data because the amount of DNA microarray data is usually very large. Since accurate classification of cancer is very important issue for treatment of cancer, it is desirable to make a decision by combining the results of various expert classifiers rather than by depending on the result of only one classifier. Generally combining classifiers gives high performance and high confidence. In spite of many advantages of ensemble classifiers, ensemble with mutually error-correlated classifiers has a limit in the performance. In this paper, we propose the ensemble of neural network classifiers learned from negatively correlated features using three benchmark datasets to precisely classify cancer, and systematically evaluate the performances of the proposed method. Experimental results show that the ensemble classifier with negatively correlated features produces the best recognition rate on the three benchmark datasets.
키워드(Keyword) DNA 마이크로어레이   유전자 발현 정보   암 분류   특징 추출   분류기  
파일첨부 PDF 다운로드