닫기
Loading..

전자정보연구정보센터 ICT 융합 전문연구정보의 집대성

국내 논문지

홈 홈 > 연구문헌 > 국내 논문지 > 한국정보처리학회 논문지 > 정보처리학회 논문지 소프트웨어 및 데이터 공학

정보처리학회 논문지 소프트웨어 및 데이터 공학

Current Result Document : 0 / 0

한글제목(Korean Title) 스택-포인터 네트워크와 부분 트리 정보를 이용한 한국어 의존 구문 분석
영문제목(English Title) Korean Dependency Parsing Using Stack-Pointer Networks and Subtree Information
저자(Author) 최용석   이공주   Yong-Seok Choi   Kong Joo Lee  
원문수록처(Citation) VOL 10 NO. 06 PP. 0235 ~ 0242 (2021. 06)
한글내용
(Korean Abstract)
본 연구에서는 포인터 네트워크 모델을 의존 구문 분석에 맞게 확장한 스택-포인터 네트워크 모델을 이용하여 한국어 의존 구문 분석기를 구현한다. 스택-포인터 네트워크 모델 기반 의존 구문 분석기는 인코더-디코더로 구성되어 있으며 다른 의존 구문 분석기와 달리 내부 스택을 갖고 있어 루트부터 시작하는 하향식 구문 분석이 가능하다. 디코더의 각 단계에서는 의존소를 찾기 위해 부모 노드뿐만 아니라 이미 파생된 트리 구조에서 조부모와 형제 노드를 참조할 수 있다. 기존 연구에서는 단순하게 해당 노드들의 합을 계산하여 입력으로 사용하였고, 형제 노드의 경우에는 가장 최근에 방문했던 것만을 사용할 수 있었다. 본 연구에서는 그래프 어텐션 네트워크를 도입하여 이미 파생된 부분 트리를 표현하고 이를 스택-포인터 네트워크의 입력으로 사용하도록 구문 분석기를 수정한다. 세종 코퍼스와 모두의 코퍼스를 대상을 실험한 결과 레이어 2의 그래프 어텐션 네트워크를 이용하여 부분 트리를 표현했을 때 특히 문장 단위의 구문 분석 정확도에서 많은 성능 향상을 확인할 수 있었다.
영문내용
(English Abstract)
In this work, we develop a Korean dependency parser based on a stack-pointer network that consists of a pointer network and an internal stack. The parser has an encoder and decoder and builds a dependency tree for an input sentence in a depth-first manner. The encoder of the parser encodes an input sentence, and the decoder selects a child for the word at the top of the stack at each step. Since the parser has the internal stack where a search path is stored, the parser can utilize information of previously derived subtrees when selecting a child node. Previous studies used only a grandparent and the most recently visited sibling without considering a subtree structure. In this paper, we introduce graph attention networks that can represent a previously derived subtree. Then we modify our parser based on the stack-pointer network to utilize subtree information produced by the graph attention networks. After training the dependency parser using Sejong and Everyone’s corpus, we evaluate the parser’s performance. Experimental results show that the proposed parser achieves better performance than the previous approaches at sentence-level accuracies when adopting 2-depth graph attention networks.
키워드(Keyword) 스택-포인터 네트워크   한국어 의존 구문 분석   그래프 어텐션 네트워크   부분 트리   사전 훈련된 단어 표현   모두의 코퍼스   Stack-Pointer Networks   Korean Dependency Parser   Graph Attention Networks   Subtree   Pre-trained Word Representation Model   Everyone’s Corpus  
원문 PDF 다운로드