Á¤º¸°úÇÐȸ³í¹®Áö (Journal of KIISE)
ÇѱÛÁ¦¸ñ(Korean Title) |
ÀÇ¹Ì Æ¯Â¡°ú ½Ã°£ ¿µ¿ª Á¦¾ÈÀ» ÀÌ¿ëÇÑ ºñºÐÇÒ ºñµð¿À¿¡¼ÀÇ Çൿ ŽÁö |
¿µ¹®Á¦¸ñ(English Title) |
Activity Detection in Untrimmed Videos with Semantic Features and Temporal Region Proposals |
ÀúÀÚ(Author) |
¼Û¿µÅÃ
±èÀÎö
Yeongtaek Song
Incheol Kim
|
¿ø¹®¼ö·Ïó(Citation) |
VOL 45 NO. 07 PP. 0678 ~ 0689 (2018. 07) |
Çѱ۳»¿ë (Korean Abstract) |
º» ³í¹®¿¡¼´Â ºñºÐÇÒ ºñµð¿À¿¡ ´ã±ä »ç¶÷ÀÇ ÇൿÀ» È¿°úÀûÀ¸·Î ŽÁöÇØ³»±â À§ÇÑ ½ÉÃþ ½Å°æ¸Á ¸ðµ¨À» Á¦¾ÈÇÑ´Ù. ÇÑ ºñµð¿ÀÀÇ ¿¬¼ÓµÈ ¿µ»ó ÇÁ·¹Àӵ鿡¼ ÇнÀÇÏ´Â ½Ã°£Àû ½Ã°¢ Ư¡µéÀº µ¿Àû Çൿ ±× ÀÚü¸¦ ÀνÄÇϴµ¥ µµ¿òÀ» ÁÖ´Â ¹Ý¸é, °¢ ¿µ»ó ÇÁ·¹ÀÓ¿¡¼ ÇнÀÇÏ´Â °ø°£Àû ½Ã°¢ Ư¡µéÀº Çൿ°ú ¿¬°üµÈ ¹°Ã¼µéÀ» ŽÁöÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖ´Ù. µû¶ó¼ ºñµð¿À·ÎºÎÅÍ ÇൿÀ» È¿°úÀûÀ¸·Î ŽÁöÇØ³»±â À§Çؼ´Â ½Ã°£Àû ½Ã°¢ Ư¡µé»Ó¸¸ ¾Æ´Ï¶ó, °ø°£Àû ½Ã°¢ Ư¡µéµµ ÇÔ²² °í·ÁµÇ¾î¾ß ÇÑ´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ½Ã°¢ Ư¡µé ¿Ü¿¡, ºñµð¿ÀÀÇ ³»¿ëÀ» °í¼öÁØÀÇ °³³äµé·Î Ç¥ÇöÇÒ ¼ö ÀÖ´Â ÀÇ¹Ì Æ¯Â¡µéµµ Çൿ ŽÁö ¼º´É Çâ»ó¿¡ µµ¿òÀ» ÁÙ ¼ö ÀÖ´Ù. ÇÑÆí, ºñµð¿À·ÎºÎÅÍ ÇൿÀÇ Á¾·ù»Ó¸¸ ¾Æ´Ï¶ó ÇൿÀÇ ½Ã°£Àû ¿µ¿ªµµ Á¤È®È÷ ŽÁöÇØ³»±â À§Çؼ´ÂÇൿ Èĺ¸ ¿µ¿ªµéÀ» ¹Ì¸® Á¦¾ÈÇÏ´Â ÇÏ´Â ¹æ¹ýÀÌ ÇÊ¿äÇÏ´Ù. º» ³í¹®¿¡¼ Á¦¾ÈÇÏ´Â ºñµð¿À Çൿ ŽÁö ¸ðµ¨Àº ½ÉÃþ ÇÕ¼º°ö ½Å°æ¸ÁÀ» ÀÌ¿ëÇØ ½Ã°¢ Ư¡°ú ÀÇ¹Ì Æ¯Â¡À» ÇÔ²² ÇнÀÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ¼øÈ¯ ½Å°æ¸ÁÀ» ÀÌ¿ëÇØ È¿°úÀûÀ¸·Î Èĺ¸ ¿µ¿ª Á¦¾È°ú Çൿ ºÐ·ù ÀÛ¾÷À» ¼öÇàÇÑ´Ù. ActivityNet°ú THUMOS¿Í °°Àº ´ë±Ô¸ð º¥Ä¡¸¶Å© µ¥ÀÌÅÍ ÁýÇÕÀ» ÀÌ¿ëÇÑ ´Ù¾çÇÑ ½ÇÇèÀ» ÅëÇØ, º» ³í¹®¿¡¼ Á¦¾ÈÇÏ´Â Çൿ ŽÁö ¸ðµ¨ÀÇ ³ôÀº ¼º´ÉÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.
|
¿µ¹®³»¿ë (English Abstract) |
In this paper, we propose a deep neural network model that effectively detects human activities in untrimmed videos. While temporal visual features extracted over several successive image frames in a video, it helps to recognize a dynamic activity itself; spatial visual features extracted from each frame help to find objects associated with the activity. To detect activities precisely in a video, therefore, both temporal and spatial visual features should be considered together. In addition to these visual features, semantic features describing video contents in high-level concepts may also help to improve video-activity detection. To localize the activity region accurately, as well as to classify an activity correctly in an untrimmed video, it is required to design a mechanism for temporal region proposal. The activity-detection model proposed in this work learns both visual and semantic features of the given video, with deep convolutional neural networks. Moreover, by using recurrent neural networks, the model effectively proposes temporal activity regions and classifies activities in the video. Experiments with large-scale benchmark datasets such as ActivityNet and THUMOS, showed the high performance of our activity-detection model.
|
Ű¿öµå(Keyword) |
ºñºÐÇÒ ºñµð¿À
Çൿ ŽÁö
½ÉÃþ ½Å°æ¸Á
½Ã°£ ¿µ¿ª Á¦¾È
ÀÇ¹Ì Æ¯Â¡
untrimmed video
activity detection
deep neural network
temporal region proposal
semantic feature
|
¿ø¹® |
PDF ´Ù¿î·Îµå
|