´Ý±â
Loading..

ÀüÀÚÁ¤º¸¿¬±¸Á¤º¸¼¾ÅÍ ICT À¶ÇÕ Àü¹®¿¬±¸Á¤º¸ÀÇ Áý´ë¼º

ÃßõÁ¤º¸

Ȩ Ȩ > E-Link > ÃßõÁ¤º¸

ICT¤ýÀ¶ÇÕ ºÐ¾ß °ü·Ã »çÀÌÆ® ¹× ¼­ÀûÀ» ¼Ò°³ÇÕ´Ï´Ù.

  • Learning-Based Video Motion Magnification
  • ECCV 2018: Computer Vision

Æ®À§ÅÍ °øÀ¯

ÆäÀ̽ººÏ °øÀ¯

European Conference on Computer Vision

ECCV 2018: Computer Vision 


¡ºLearning-Based Video Motion Magnification¡»


Authors

Tae-Hyun Oh, Ronnachai Jaroensri, Changil Kim, Mohamed Elgharib, Frédo Durand, William T. Freeman & Wojciech Matusik 


Abstract

Video motion magnification techniques allow us to see small motions previously invisible to the naked eyes, such as those of vibrating airplane wings, or swaying buildings under the influence of the wind. Because the motion is small, the magnification results are prone to noise or excessive blurring. The state of the art relies on hand-designed filters to extract representations that may not be optimal. In this paper, we seek to learn the filters directly from examples using deep convolutional neural networks. To make training tractable, we carefully design a synthetic dataset that captures small motion well, and use two-frame input for training. We show that the learned filters achieve high-quality results on real videos, with less ringing artifacts and better noise characteristics than previous methods. While our model is not trained with temporal filters, we found that the temporal filters can be used with our extracted representations up to a moderate magnification, enabling a frequency-based motion selection. Finally, we analyze the learned filters and show that they behave similarly to the derivative filters used in previous works. Our code, trained model, and datasets will be available online. 


Review

»ç¶÷ ´«¿¡ º¸ÀÌÁö ¾ÊÀ» ¸¸Å­ ÀÛÀº ºñµð¿À ³»ÀÇ ¿òÁ÷ÀÓÀ» °íÈ­ÁúÀ» À¯ÁöÇÏ¸ç ´«¿¡ ¶ç°Ô Å©°Ô ÁõÆø½ÃŰ´Â Àΰø½Å°æ¸ÁÀ» Á¦¾ÈÇÑ ¿¬±¸

º» ¹æ¹ý·ÐÀ» ÅëÇØ, »ç¶÷ÀÇ µÎ»ó ¿µ»ó ºñµð¿À¸¸À¸·Î ½ÉÀå¹Úµ¿À» ºñÁ¢ÃË ¹æ½ÄÀ¸·Î ÃøÁ¤ÇÒ ¼ö ÀÖÀ¸¸ç, ¿£Áø µîÀÇ ±â°è Áøµ¿ ºÐ¼®, °ÇÃà ±¸Á¶¹°ÀÇ °øÁø Á֯ļö ºÐ¼® µî¿¡ ÀÀ¿ë

ECCV'2018 ±¸µÎ ¹ßÇ¥ ³í¹® (Oral paper, 2%ÀÇ acceptance rate) ¼±Á¤

(°ü·Ã ¿µ»ó: https://youtu.be/GrMLeEcSNzY)