27th International Conference on International Conference on Machine Learning 2010
¡ºRectified Linear Units Improve Restricted Boltzmann Machines¡»
Authors
Vinod Nair, Geoffrey E. Hinton
Abstract
Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all have the same weights but have progressively more negative biases. The learning and inference rules for these "Stepped Sigmoid Units" are unchanged. They can be approximated efficiently by noisy, rectified linear units. Compared with binary units, these units learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset. Unlike binary units, rectified linear units preserve information about relative intensities as information travels through multiple layers of feature detectors.
Review
Restricted Boltzmann machinesÀº ÀÌÁø À¯´ÖÀ» »ç¿ëÇÏ¿© °³¹ßµÇ¾úÁö¸¸, À̵éÀ» ¹«ÇÑÇÑ ¼öÀÇ µ¿ÀÏÇÑ °¡ÁßÄ¡¿Í Á¡Á¡ ´õ ºÎÁ¤ÀûÀÎ ÆíÇâÀ» °¡Áø º¹»çº»À¸·Î ÀϹÝÈ
ÀÌ·¯ÇÑ "´Ü°èº° ½Ã±×¸ðÀ̵å À¯´Ö"Àº ÀÌÁø À¯´Ö°ú ºñ±³ÇÏ¿© °´Ã¼ ÀÎ½Ä ¹× ¾ó±¼ °ËÁõ¿¡ ´õ ÀûÇÕÇÑ Æ¯¼ºÀ» ÇнÀÇϸç, Á¤º¸¸¦ ´ÙÃþ Ư¡ °ËÃâ±â¸¦ Åë°úÇÏ¸é¼ »ó´ëÀû °µµ¿¡ ´ëÇÑ Á¤º¸¸¦ º¸Á¸