ÀüÀÚÁ¤º¸¿¬±¸Á¤º¸¼¾ÅÍ¿¡¼ Á¦°øÇÏ´Â AI °ü·Ã ¼ºñ½ºÀÔ´Ï´Ù.
Variations in the El Niño/Southern Oscillation (ENSO) are associated with a wide array of regional climate extremes and ecosystem impacts. Robust, long-lead forecasts would therefore be valuable for managing policy responses. But despite decades of effort, forecasting ENSO events at lead times of more than one year remains problematic. Here we show that a statistical forecast model employing a deep-learning approach produces skilful ENSO for...
´Ù¾çÇÑ ½Ç³»°ø°£ Á¡±º µ¥ÀÌÅÍ¿¡¼ÀÇ È¿°úÀûÀÎ 3Â÷¿ø Æò¸é ÃßÃâ¹ý
´ëÇÑÀüÀÚ°øÇÐȸ (2020³â 10¿ù)
¿ªÀüÆÄ ¾Ë°í¸®ÁòÀ» ÀÀ¿ëÇÑ Àα¸Åë°èÇÐ ±â¹Ý ¼¿ï ÁÖÅð¡°Ý º¯È ¿¹Ãø ¿¬±¸
´ëÇÑÀüÀÚ°øÇÐȸ (2020³â 10¿ù)
±¹¹Î°Ç°¿µ¾çÁ¶»ç ¿ø½ÃÀÚ·á¿¡ ±â¹ÝÇÑ ½Ä½À°ü°ú ¸¸¼ºÁúȯ°£ÀÇ ¿¬°ü¼º ºÐ¼®
Çѱ¹Á¤º¸°úÇÐȸ (2020³â 07¿ù)
ÁúÀǸ¦ Ȱ¿ëÇÑ Á¦·Î¼¦ °´Ã¼ ŽÁö
Çѱ¹Á¤º¸°úÇÐȸ (2020³â 07¿ù)
µö·¯´×À» ÀÌ¿ëÇÑ ±³Â÷·Î¿¡¼ÀÇ Â÷·® Ä«¿îÆÃ ¹æ¹ý
Çѱ¹Á¤º¸°úÇÐȸ (2020³â 07¿ù)